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SUMMARY

The paper introduces the notion of nonidentifiable posteriors, and brings
in several examples of the same from different areas of statistics. It is . .
pointed out also that often the impropriety of the posterior has gone
unnoticed in literature. : o
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1. ‘Introduction

Bayesian methods are finding increasing acceptance in the theory and
practice of statistics. This can partly be attributed to the fact that even with
little or vague prior information, Bayesian methods can be used very effectively
by employing “diffuse” or “noninformative” priors. Thus, not surprisingly, over
the years, a wide variety of noninformation priors have been proposed based
on diverse criteria. '

One of the potential dangers with the use of such priors in that often
one is led into improper posteriors. Improper posteriors can wreck havoc when
one is interested in descriptive measures such as posterior means or posterior
quantiles, or in inferential criteria such as credible sets. While Bayesian analysts
are well-aware of this problem, in practice, the impropriety ‘of thé-posterior
often goes unchecked, especially for very complex models. Another cause of
concern is that most Bayesian procedures, in these days, are implemented via
Markov Chain Monte Carlo (MC?) integration techniques. This requires
generating samples from several conditional pdf’s in. order to find marginal
posteriors of the parameters of interest. It may so happen that all these
conditionals are proper pdf’s, and yet the joint posterior pdf is improper. In
other words, the impropriety of the posterior remains undetected by the
MC? technique. :
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The impropriety of the posterior can happen in many ways, and once
noninformative priors are employed, one is advised to check analytically the
propriety or otherwise of posteriors by finding suitable analytical bounds of
* integrals under consideration. However, often there is a simple way to detect
the impropriety of posteriors. If for example, the joint posterior 7t ©,¢1y) of
the parameter vector (6,¢) given the data y(6,¢ and y can be
real-or-vector-valued) is expressed as ©(6,¢ly)=g(01y), and at least one

of the comiponents of ¢ has infinite range, then _r n(6,¢!y) dd=+c which

immediately implies thatfn e, ¢ I‘y) d ¢ d6 = + co. The fact that (8, ¢ | y) does
not depend on ¢ makes the posterior nonidentifiable. The nonidentifiability is
a consequence of nomdentlﬁable likelihoods together with . nomdennﬁable
priors. :

Often the nonidentiﬁability of the posterior is easier to .detect by a
one-to-one transformation of parameters. The fact is that if certain parameter
(vector) has an improper posterior, the same is true of any one-to-one function
of that parameter.

In this note, several examples of nonidentifiable improper posteriors are '
presented. In some of the examples, the impropriety has gone unnoticed in
the literature. These examples cover a wide range of models, beginning with
simple location models and dealmg subsequently into more complex modéls
such as item-response models, and generalized linear models with spatial
correlation structure,

2. Examples
Example 1. Consider the one-way ANOVA model
u+al+eu,(y—l,...,n,,i— ,.;.,p) 2.1

- where the & are independent with some speeiﬁed pdf’s f;,'- Then, the likelihood .
function is given by

L(u,ai,...,ap;y)'= i=1 HJ—l ij ()’jj-ll—_ai) 2.2)
Suppose now one puts the uniform prior . -

o n(u,al,... o) o< 1 : (23)

for (u, e, @ ) where each component ranges over (— 0 oo) Then, denotmg

the data vector by y, the joint posterior is given by

T, 0., 0ply) o H-, I £ (5-n-o) (24)




(a eqvarn o

SOME EXAMPLES OF NONIDENTIFIABLE IMPROPER POSTERIORS 113

With the one-to-one transformation ¢=p,8, =+ G=1,...,p) the joint
posterior of (¢,6,,..., Op) is ' ' :

n($,0),...,6, ly) o IE_, H;-‘;ﬂl fi (v;- 9;) .. (2.5)
which does not depend on ¢. Integrating witﬁ respect to ¢ over (- o6, ), one
proves the impropriety of the posterior. ' ‘

Remark 1. The impropriety of the posterior in this example is due to
nonidentifiability of both the likelihood and the _prior. A result is proved which
provides a necessary and sufficient condition for the propriety of the posterior
with a nonidentifiable likélihood. The result is implicit in Dawid [S5] and in
O’Hagan [7], but it is worth making it explicit due to its simplicity.

Proposition 1. Suppose the likelihood function L (8, ¢; y) is expressible
as L(8,¢;y) = g(8;y). Consider the prior n(8,¢) for (6,¢). Then the
posterior 7 (8, ¢1y) is proper if and .only if both the conditional pdf’s
n(6ly) and m (¢ 16) are proper.

Proof. '
£©@0ly) = LO,6y)T® 0 =26,0)70.0)
= g(8,Y)n@)n(018) < n@®ly)n(®!6) (2.6)

Remark 2. ﬁkample 1 also shows that if instead one views the likelihood
asL(®,...,8; y) and put the flat prior t (6, ..., Op) o1, then the posterior

15(61, B, ly) e ITP_, HJ“= B0 8, ) can be proper. In particular, if the

errors e are iid N (0, 0%) where o’ (> 0) is known, then it is well-known that
: - P n .
the posterior n(el,...,eply) oc exp[—2—1; z z (yij—ei )2] oc
o i=1 i=1

. . . n .
exp[—al—izni (ii-ei)z} . =0'Y "' y;.i=1,....p)is the product of
¢} j=1 .

p independent normal pdf’s. This implies that the joint posterior of the
elementary contrasts (o, — Q... ., Uy~ ap,) = (8, - ep, cees Gp_l —Op)‘ is

also proper. _
The.normal linear model has been treated very extensively in Sabu and
Gelfand [10]. Indeed, these authors have established in the normal case a very

strong connection between the nonestimability of parameters, and corresponding
impropriety of posteriors: under diffuse priors.



114 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Example 2. This example extends the results of Example 1 to item response
models. These models have been used very extensively for the analysis of
psychological data. As a specific example, consider ability tests or attitude tests
where each individual answers a battery of questions. Let Yij denote the response
of the ith individual to the jth question (i=1, ..., nj=1,..k). Associated with
the ith individual is a subject parameter Bi that expresses the capacity, ability
_ or attitude of the individual in a given context. However, the distributions of

the Yij will depend not only on the B.. but also on some parameter @, where
Qo r‘epresents the nature or the difficulty level of question j. Item response
analysis models the distribution of Y;; taking into account both B, and’ o,
Gi=1,.,nj=1,.. k)

Consider the case when the Yij are binary random variables. This is, for
example, the situation when n examinees are answering “True/False” questions.
Alternately, the examinees may answer multiple choice questions, where each
answer is coded as ‘“comect” or “incorrect” Let p; = P (Yij =1)

Gi=1,...,m;j=1,..., k), where 1 denotes a correct response. The general form
of a one-parameter item response model is
pij=F(@B;- ;) 2.7

where F is a distribution function. This is called a one parameter item response
_model since as a function of B.. this has the form of a location-family distribution
function with location ~parameter Q. In the special case when
F(x) = exp (x)/ [1 +exp (x) ], that is F is the logistic distribution function, the
model is the celebrated Rasch model. (Rasch [9]), while when F(x)=® (x),
the cdf of the N(0,1) variable, the model is referred to as the probit model
(Lord [8]). .

Writing =, ..., B ), o= (a,, ..., &), the likelihood function is given by

LB oy =T, TG, [P5@-a) F 7% (- q))] (28)

where F = 1 -F. Suppose now one uses the flat prior (ﬁ, a) o< 1. With the

one-to-one transformation o,=B,-c.G=1,..n), 0, +j= 0 =0

G=1,..,k—1) and ¢=a,, the prior 7 (8, ¢) « 1, and the joint posterior of
6=(,,...,6,,6 -+8,,_) and ¢ is given by '

n+1”°°

n®,¢ly) = IM_, n};} [F(6;-8,,;) F' % (6;=6,4;)]
xITi_ [F(8)F ™% (9;)] (2.9)
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which does not depend on ¢ & (=0, « ). Thus, the joint posterior is improper.

Remark 3. The findings of Example 1 may suggest that if the likelihood
given in (2.7) is viewed ‘only as a function of 6, then the diffuse prior
7(0) < 1 may lead to a proper posterior 7 @l y) For Example 2, the result
is true except on the boundary where y,, = ...=Y lk--0 or 1 for at least one

ior yIJ e T Yy =0 of 1 for at least one j. The ‘details are worked out in

Ghosh, Ghosh and Agresti [6). The difference between the present case, and
the one in Example 1 may be attributed to the discreteness of the data in this
example in contrast to the continuous data of Example 1. o

Example 3 'We continue with the likelihood given in Example 2, but
consider instead the prior 7 B, ) = 7, (B) m, (o) where

nl (B) oc I ,[ nl— 1 [0[ u] (ﬁ. - u)/ 0]) ] m] (ol) du dOl . (2.10)
and | . .
ﬂ’q(a) ,[ I ,—l [o; u2((a u)/oz)]mz(oz)dudoz (2.11)

p Up ™y and m, being proper or unproper pdf’s. Clearly, both IT, (B) and
H (o) are hierarchical priors. For example, condmonal on u and
6,,B,-.:.B, are iid with common location-scale pdf o)’ u ((B-n)/ o))
Sumlarly, condmonal onp and 0, Q.- ak are iid with common
location- scale pdf 02 p ((a-p)/ o,). Marginally I, ,, and o, are mutually
independent with p uniform (- «, ), while ¢,-and g, have pdf’s m (o )} and
mz(oz). To recognize the nonidentifiability of the posterior, it is convenient
to, write the posterior as I

n(Bau,UI,UzU’)“ .—lnj—lle"(ﬁ. o) F'” y“(B - )]
XI'I"_I [Ul Ul((B ”)/ol)] )
| x T [67 " 1, (0~ wioimy (o) my (0p)  (212)
With the one-to-one transformation ~ 6, = B, -1, Gi=1,...,n),

) .=aj—u,(j=l,...,k), 0 o, (Mm=12), ad. ¢=p the

n+) n+k+m=

transformed posterior is given by
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nO.¢ly) < ImM_, n};l_[Fyu(ei—en+j)1‘:’-Ysj(ei—e,,ﬂ.)]
x II_ ‘[9;#+1 Uy (8;/ Oy )] TIEL | 167442 Uy (Bnej/ Bpixaz ) 1
X my By )My B4y 42) (2.13)

Since this posteridr does not depend on ¢ € (- o, ), its nonidentiﬁability and
impropriety follow immediately. - ' ‘ :

Example 4. Finally, consider a generalized linear mixed effects model with
some spatial correlation structure. We begin with the generalized linear model
where conditional on 8,...,6,Y,.... » Y, are independent with pdf’s

f(y;16) = exp[¢7' (0, - WO N+ cy; 6)]  (2.14)

where 91; ..., 0, are unknown, but ¢ (> 0) is known. Important special cases
are the Bernoulli model with probabilities of success p, or the Poisson (1)
models. In each case ¢ = 1. In the Bemoulli case 8,=log(p,/(1- p;) ), while
in the Poisson case 6, =log A,

Next consider the spatial mixed effects model
0, = u+x}rb+uj+vi | (2.15)

where p is the unknown general effect, x;, (p x 1) are the known design vectors,

and b is the unknown regression vector. It is assumed that the matrix
(Lx,..., xp) has rank = p + 1 < n. The u; and the v, are mutually independent

with the v, iid N (0,07 ), while u,, ..., u_have joint pdf

: . 1
fQu,...,u)= (oﬁ)'i“ exp [ —Z z w;; 8 (u; - uj)/ (203) 1 (2.16)
' i . .
where g is a function symmetric about zero. The summation is over all pairs
i - j that are deemed as neighbors, and the W;; are a corresponding set of

:

specified positive weights.

To complete the Bayesian hierarchical model, it is assumed that
i, b, o:, and 03 are mutvally independent with p ~ uniform (- oo, o),

b ~ uniform (R?), 6% ~ Gamma (% a, %g), and ¢, ~ Gamma (% c,%d). (A
random variable Z ~ Gamma (at, B) if it has pdf f(z) < exp(-az)zP~ !,
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The prior- given in (2.16) is the celebrated pairwise difference prior
considered by several authors. Among others, . this -appears in Clayton and
Kaldor [4], Besag, York and Mollie [2], Bernardinelli and Montomoli [1], and
Besag, Green, ‘Higdon and Mengersen [3]. The first three papers were primarily
concerned with disease maps, and used some version of the Poisson likelihood
slightly different from the present one. Our main contention is to show, however,
is that the inclusion of the intercept term b, along with the pairwise difference

prior given in (2.16) creates nonidentifiability in the model leading thereby to
a nonidentifiable improper posterior.

To this end, first write the joint posterior of 6,u,L, b, °\2. .and 03 as

700, u, b, 0% a2 ly) < expl 2, {8;y;—¥(©)}]
1

x expl-Y 6 -p-x b-u)/(20))]

i=1 -
x(d%)'.%"exp[—z 2 w8 (u;—-uj)/(Zoi')] (oﬁ)'%“
i

X -1 . _ .
X exp (~a/ (202) (02 2% exp (-c/ 200)(0) 27

With the one-to-one transformation z, = |+ 1, i=1,..., n), the joint posterior

of 8,2=(z,,... ,znj, u,b, oﬁ and oi‘is given by

(8,1, b, 0, 0, 1y) = expl Y, {8;y;i-¥(8)}]
1 ,

x exp [ -2 (®; —x? b —‘zi)zl (203 )1
i=1 .
x (632" expl~ PIDIRT gz -2)/ Qo)) (023"
1.~
x exp (—-2/Q20)) (03) 787! exp (- /(262)) (03)'%"' !
(2.17)

which does not depend on p € (=0, ). This leads to a nonidentifiable
improper posterior. :
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Inspite of the easily recognizable impropriety of the above posterior, it
appears that its impropriety has gone unnoticed in-the literature prior to Besag
ef al. [3). It is easy to fix the impropriety of this posterior by removing the
intercept term. The details are omitted. Besag et al. [3] recognize the impropriety

of the posterior, but claim that the posterior of @ is still proper. This, however,
does not seem to be the case.
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